Continious-Time Markov Chains (CTMC)

University of Tehran Prepared by: ahmad Khonsari Excerpt from : **CTMC ,** Ward Whitt

Definition of a CTMC

- For the continuous-time Markov chain {X(t) : t ≥ 0} with N states, the Markov property can be written as
- $P[X(s + t) = j | X(s) = i, X(u) = x(u), 0 \le u < s$ |= *P*[*X*(*s* + *t*) = *j* | *X*(*s*) = *i*]*, i, j* ∈ *S*, 0 ≤ *t* < ∞,
- and reflects the fact that the future state at time s+t only depends on the current state at time s .

transition probabilities functions

• We consider the special case of stationary transition probabilities functions (sometimes referred to as homogeneous transition probabilities functions), occurring when

 $P[X(s + t) = j | X(s) = i] = P[X(t)] = j | X(0) = i] = P_{ij}(t)$

for all states i and j and for all times $s > 0$ and $t > 0$;

• the independence of s characterizes the stationarity. *and*

 $P(t) = [P_{i,j}(t)]$

is called the transition probability matrix function (*TPMF*)*.*(a function of time compared to TPM)

Exponential holding time in states of CTMC

- *Proposition: Tⁱ* is exponentially distributed
- *Proof:* By time homogeneity, we assume that the process starts out in state *i*. For *s ≥* 0 the event ${T_i > s}$ is equivalent to the event ${X(u) =$ *i* for $0 \le u \le s$.
- Similarly, for *s*, $t \ge 0$ the event $\{T_i > s+t\}$ is equivalent to the event $\{X(u) = i \text{ for } 0 \le u \le s + 1\}$ *t*}.

Exponential holding time in states of CTMC

- Therefore,
	- *P* ($T_i > s + t$ | $T_i > s$)
	- $P(X|U) = i$ for $0 \le U \le S + t | X(U) = i$ for $0 \le U \le S$
	- $P(X|U) = i$ for $s < u \leq s + t$ | $X(u) = i$ for $0 \leq u \leq s$ |
	- $P(X(u) = i \text{ for } s < u \leq s + t | X(s) = i$
	- $= P(X|U) = i$ for $0 < U \le t |X(0) = i$

 $= P(T_i > t)$

Exponential holding time in states of CTMC

• where

- the second equality follows from the simple fact that $P(A \cap B | A) = P(B | A)$, where we let $A = \{X(u) =$ *i* for 0 ≤ *u* ≤ *s*} and *B* = {*X*(*u*) = *i* for *s* < *u* ≤ *s* + *t*}.

- the third equality follows from the Markov property.
- the fourth equality follows from time homogeneity.

Therefore, the distribution of T_i has the memoryless property, which implies that it is exponential.

Chapman-Kolmogorov equations

- *Lemma 1.* (Chapman-Kolmogorov equations) For all s ≥ 0 and t ≥ 0 , $P_{i,j}(s + t) = \sum_{k} P_{i,k}(s) P_{k,j}(t)$
- Or in matrix notation $P(s + t) = P(s)P(t)$
- *Proof*
- We can compute $P_{i,j}(s + t)$ by considering all possible places the chain could be at time s.
- We then condition and and uncondition, invoking the Markov property to simplify the conditioning; i.e.,

$$
P_{i,j}(s + t) = P(X(s + t) = j | X(0) = i)
$$

Chapman-Kolmogorov equations

- *Proof (cntd.)*
- $=\sum_k P(X(s + t) = j, X(s) = k | X(0) = i)$
- $\sum_{k} P(X(s) = k | X(0) = i)P(X(s + t) = j | X(s) = k, X(0) = i)$ (conditioning on X(s)=k)
- $= \sum_k P(X(s) = k | X(0) = i)P(X(s + t) = j | X(s) = k)$ (Markov property) (uncondition)
- $=\sum_{k} P_{i,k}(s) P_{k,j}(t)$ (stationary transition probabilities)

▪

=

Describing a CTMC

- A CTMC is well specified if we specify:
- (1) its initial probability distribution $p(X(0) = i)$ for all states i
- (2) its transition probabilities $P_{i,j}(t)$ for all states i and j and positive times t.
- Thus we use these two elements to compute the distribution of X(t) for each t,
- $P(X(t) = j) = \sum_i P(X(0) = i) P_{i,j}(t)$

Describing a CTMC

• Since the CTMC must be at any time in one of the N states, the analogous of DTMC is, for any state *i*

$$
\sum_{j=1}^N P_{i,j}(t)=1
$$

constructing a CTMC model- four approaches(models)

- for all four models:
- the initial distribution are required and thus we focus on specifying the model beyond the initial distribution.
- The four models are equivalent: you can get to each from any of the others.
- Even though these four approaches are redundant, they are useful because they together give a different more comprehensive view of a CTMC.

• For the DTMC with transition matrix P (looking at the transition epochs of the CTMC thus $p_{ii}=0$), the transition probabilities of the embedded chain

$$
p_{i,j} = \lim_{\Delta t \to 0} \mathbb{P}\{X_{t+\Delta t} = j | X_{t+\Delta t} \neq i, X_t = i\}
$$

\n
$$
= \lim_{\Delta t \to 0} \frac{\mathbb{P}\{X_{t+\Delta t} = j, X_{t+\Delta t} \neq i | X_t = i\}}{\mathbb{P}\{X_{t+\Delta t} \neq i | X_t = i\}}
$$

\n
$$
= \begin{cases} \frac{q_{i,j}}{\Sigma_j q_{i,j}} & i \neq j \text{ cf. } \mathbb{P}\{\min(X_1, \dots, X_n) = X_i\} = \frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}, \text{ when } X_i \sim \text{Exp}(\lambda_i) \\ 0 & i = j \end{cases}
$$

• Markov process, transition rates $q_{i,j}$ equilibrium probabilities $\tilde{\pi}_i$

- Embedded Markov chain, transition probabilities p_{ij}
- equilibrium probabilities π_i

• For this DTMC the steady state probability vector is π, the unique probability vector satisfying the equation

 $\pi = \pi P$ (1)

• Instead of having each transition take unit time, now we assume that the time required to make a transition from state i has an exponential distribution with rate q_i , and thus mean $1/q_i$, independent of the history before reaching state i.

• Relating the steady-state (stationary) probability vector $\tilde{\pi}$ of the CTMC to steady state probability vector of DTMC π

$$
\tilde{\pi}_j = \frac{(\pi_j/q_j)}{\Sigma_k(\pi_k/q_k)} \qquad (2)
$$

- Indeed, this first modelling approach corresponds to treating the CTMC as a special case of a semi-Markov process (SMP)
- We assume that there are no one-step transitions from any state to itself in the DTMC (no self-loop); i.e., we assume that $P_{i,i} = 0$ for all i (we look at the chain at transitions)
- this assumption is not critical,(see the third modelling)

Markov processes have no self-loops and their state transitions are characterized by a *generator matrix,* which is analogous to a probability transition matrix. The classification of states have analogous statements for Markov processes where the probability transition matrix is replaced by a generator matrix.

The generator matrix of a Markov process, denoted by *Q,* has entries that are the rates at which the process jumps from state to state. These entries are defined by

$$
q_{i,j} = \lim_{\tau \to 0} \frac{P[X(t+\tau) = j | X(t) = i]}{\tau} \qquad i \neq j \quad (3')
$$

(We assume that the Markov process is time homogeneous and thus that (3') is independent of *t.*)

The total rate out of state i is denoted by *qi* and equals

 $q_i = \sum_{j \neq i}^{\infty} q_{i,j}$ (4')

The holding time of state i is exponentially distributed with rate q_i .

By definition, we set the diagonal entries of *Q* equal to minus the total rate,

$$
q_{i,i}=-q_i\left(5'\right)
$$

This implies that the row sums of matrix *Q* equal 0.

• *stationary probabilities* in terms of the generator matrix. Using the results of EMC in SMP (i.e. $\tilde{\pi}_i$ = *π e* \int_{i}^{a} $\tilde{E}[\dot{\mathsf{S}}_{i}]$ σ *j*∈*S π e j E*[*S^j*] *, i* ∈

S,) and multiplying (2) by
$$
q_{ji}
$$
 and summing yields [and using (5') $q_{i,i} = -q_i$ and $\pi_i = \sum_{j \neq i} \pi_j p_{j,i} = \sum_{j \neq i} \pi_j \frac{q_{i,i}}{q_j}$ slide 12]

$$
\sum_{j=0}^{\infty} \tilde{\pi}_j q_{ji} = \frac{\sum_{j=0}^{\infty} (\pi_j q_{ji}/q_j)}{\sum_k (\pi_j/q_j)} = \frac{\sum_{j\neq i} (\pi_j q_{ji}/q_j) + \pi_i q_{ii}/q_i}{\sum_k (\pi_j/q_j)}
$$

= $\frac{\pi_i - \pi_i}{\sum_k (\pi_j/q_j)} = 0$ [nel (8.65)]

• Rewriting in matrix form, shows that the stationary probabilities of a Markov process satisfy

 $\pi Q = 0$,

with the additional normalization requirement that

$$
\|\pi\|=1.
$$

- We look at the chain at any time (so we need to define zero-time transition probabilities, $P_{i,j}(0) = 1$ since there is no instant jump from a state)
- let $P(0) = I$, where I is the identity matrix; i.e., we set $P_{i,j}(0) = 1$ for all i and we set $P_{i,j}(0) = 0$ whenever $i \neq j$.
- We define $Q \equiv \lim_{h \downarrow 0}$ $P(h)-I$ $\frac{y}{h}$ = lim_h \downarrow 0 $P(h)-P(0)$ \boldsymbol{h}
- $= P'(0+)$ (it is rate)

See Ross prob. Models 9th ed. ch 6 page 378

• Thus the transition rate from state i to state j be defined in terms of the derivatives:

$$
Q_{i,j} \equiv \lim_{h \downarrow 0} \frac{P_{i,j}(h) - P_{i,j}(0)}{h} = P'_{i,j}(0+) = \frac{dP_{i,j}(t)}{dt} \Big|_{t=0+} \quad (3)
$$

\n
$$
Q_{i,i} = \lim_{h \downarrow 0} \frac{P_{i,i}(h) - P_{i,i}(0)}{h} = \frac{P_{i,i}(h) - 1}{h} = P'_{i,i}(0+) = \frac{dP_{i,i}(t)}{dt} \Big|_{t=0+} \quad (3)
$$

• in most treatments of CTMC's instead of above, it is common to assume that

$$
P_{i,j}(h) = Q_{i,j}h + o(h)
$$
 as $h \downarrow 0$ if $j \neq i$ (4) and
 $P_{i,j}(h) - 1 = Q_{i,j}h + o(h)$ as $h \downarrow 0$, (5)

• For finite state space, (for infinite state spaces under extra regularity conditions),we have

•
$$
Q_{i,i} = -\sum_{j,j\neq i} Q_{i,j}(t)
$$
 (6)

since $P_{i,j}(t)$ sum over j to 1 $\sum_{j=1}^N P_{i,j}(\mathsf{t}) = 1$ so $P_{i,i}(\mathsf{t}) + \sum_{j=1,j\neq i}^N P_{i,j}(\mathsf{t}) = 1$ $\sum_{j=1,j\neq i}^{N} P_{i,j}(t) = 1 - P_{i,i}(t)$ Dividing by t and let $t\rightarrow 0$ we obtain (6) And let

 $-Q_{i,i}$ = q_i (7) for all i,

- Same as DTMC model that is specified via a transition probability matrix P, we can specify a CTMC model via the transition-rate matrix Q.
- In specifying the transition-rate matrix Q, it suffices to specify the off-diagonal elements

 $Q_{i,j}$ for *i≠ j*, because the diagonal elements $Q_{i,j}$ are always defined by (6).

- The off-diagonal elements are always nonnegative, whereas the diagonal elements are always negative.
- Each row sum of Q is zero.

- In fact, this approach to CTMC modelling is perhaps best related to modelling with ordinary differential equations,
- We may use Chapman-Kolmogorov equations to find the transition probabilities $P_{i,j}(t)$ from the transition rates $Q_{i,j} \equiv P'_{i,j}(0+)$
- To do this we use the two systems of ordinary differential equations (ODE's) generated by the transition rates namely, Kolmogorov forward and backward ODE's (defined next).

Theorem 1. (Kolmogorov forward and backward ODE's) The transition probabilities satisfy both the Kolmogorov forward differential equations $P'_{i,j}(s + t) = \sum_{k} P_{i,k}(s) Q_{k,j}(t)$ *for all i, j* (9)

in matrix notation is the matrix ODE

 $P'(t) = P(t)Q$ (10)

and the Kolmogorov backward differential equations

 $P'_{i,j}(s + t) = \sum_{k} Q_{i,k}(t) P_{k,j}(t)$ *for all i, j* (11) in matrix notation is the matrix ODE *P′*(*t*) *= QP*(*t*) (12)

• *Proof:* We apply the Chapman-Kolmogorov equations to write

 $P(t + h) = P(t)P(h)$,

and then do an asymptotic analysis as $h \downarrow 0$.

• We subtract P(t) from both sides and divide by *h*, to get \mathbf{h} $(\cdot \cdot \cdot \cdot \cdot)$

$$
\frac{P(t+h) - P(t)}{h} = P(t) \frac{P(h) - I}{h}
$$

where *I* is the identity matrix

- Recalling that $I = P(0)$, we can let h $\downarrow 0$ to get the desired result (10).
- To get the backward equation (12), we start with

```
P(t + h) = P(h + t) = P(h)P(t)
```
and reason in the same way

- *Example* (Transient Probabilities for the *M/M/1* Queue)
- Note that given that the initial state at time 0 was state i,
- Writing the forward equation for the *MIMl1* queue yields

•
$$
\frac{dP_{i,0}(t)}{dt} = \mu P_{i,1}(t) - \lambda P_{i,0}(t),
$$

•
$$
\frac{dP_{i,j}(t)}{dt} = \mu P_{i,j+1}(t) + \lambda P_{i,j-1}(t) - (\lambda + \mu) P_{i,j}(t).
$$

• *Example (Cntd.)* The solution to these equations for this case is then given by

$$
P_{i,j}(t) = e^{-(\lambda + \mu)} \left[\begin{matrix} \rho^{(j-i)/2} I_{j-i}(\alpha t) + \rho^{(j-i-1)/2} I_{j+i+1}(\alpha t) \\ + (1-\rho) \rho^j \sum_{k=j+i+2} \rho^{-k/2} I_k(\alpha t) \end{matrix} \right]
$$

• where $\rho =$ λ μ and α =2 $\mu\sqrt{\rho\,}$ and

•
$$
I_k(x) = \sum_{m=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{k+2m}}{(k+m)!m!}
$$
 $k \ge -1$

is the series expansion for the modified Bessel function of the first kind.

- *Example (Cntd.)* It is difficult to have any intuition regarding the solution except for its limiting, and thus stationary, values.
- (no need for normalization eq. since initial condition P(0) =(0,…0, 1,0,,...) being in state i at t=0 $(p_{ii}(0)=1)$ is an extra equation)
- In the third term (i.e. coefficient $(1 \rho)\rho^{j}$) we see factors corresponding to the stationary distribution.
- it must be lim $t\rightarrow\infty$ *P i,j* $(t) = (1 - \rho)\rho^{j}$ independent of i.
- The solution of transient probabilities suggests that :
- $\lim_{t\to\infty}e^{-(\lambda+\mu)}\rho^{(j-i)/2}I_{j-i}(\alpha t)=0$
- $\lim_{t\to\infty}e^{-(\lambda+\mu)}\rho^{(j-i-1)/2}I_{j+i+1}(\alpha t)=0$
- $\lim_{t \to \infty} e^{-(\lambda + \mu)} \sum_{k=j+i+2} \rho^{-k/2} I_k(\alpha t) = 1$

- Equations (10 &12) are matrix ODE's in *t* that can be similarly solved as the scalar ODE $f'(t)=qf(t)$ and have matrix exponential solution.
- $(P(0) = I)$, the initial condition plays no role) In particular, as a consequence of Theorem 1, and If all entries of *Q* are bounded,(*Q* is said to be **uniform:** the name comes from uniformization of CTMC in model 4) we have the following corollary.
- $Q_{i,j} = \infty$ means instantaneous jump from state I upon entering this state

• *Theorem 2*. (matrix exponential representation) The transition function can be expressed as a matrix-exponential function of the rate matrix Q, i.e.,

$$
P(t) = e^{Qt} = \sum_{n=0}^{\infty} \frac{Q^n t^n}{n!} \quad (13)
$$

This matrix exponential is the unique solution to the two ODE's with initial condition *P*(*0*) *= I*.

• Proof: If we verify or assume that we can interchange summation and differentiation in (13), we can check that the displayed matrix exponential satisfies the two ODE's

$$
P'(t) = \frac{d}{dt} \sum_{n=0}^{\infty} \frac{Q^n t^n}{n!} = \sum_{n=0}^{\infty} \frac{d}{dt} \frac{Q^n t^n}{n!}
$$

$$
= \sum_{n=0}^{\infty} \frac{n Q^n t^{n-1}}{n!} = Q \sum_{n=0}^{\infty} \frac{Q^n t^n}{n!} = Q e^{Qt} \qquad \blacksquare
$$

Summary of some Models of Markov Processes

