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Definition of a CTMC

* For the continuous-time Markov chain {X(t) : t
> 0} with N states, the Markov property can be

written as

e PIX(s+t)=j| X(s) =i, X(u)=x(u), 0<u<s ]=
PIX(s+t)=j | X(s)=i],i,jES, 0<t<oo,

e and reflects the fact that the future state at
time s+t only depends on the current state at
times.



transition probabilities functions

* We consider the special case of stationary transition
probabilities functions (sometimes referred to as
homogeneous transition probabilities functions),
occurring when

PIX(s+t)=j | X(s)=i]=P[X(t)=j | X(0)=i]=P;(t)

for all states i and j and for all timess>0and t > 0;
 the independence of s characterizes the stationarity.
and

P(t) = [P;; (t)]

is called the transition probability matrix function
(TPMF).( a function of time compared to TPM)



Exponential holding time in states
of CTMC

* Proposition: T, is exponentially distributed

* Proof: By time homogeneity, we assume that
the process starts out in state i. For s 2 0 the
event {T. > s} is equivalent to the event {X(u) =
i for0<u<sh

* Similarly, for s, t 2 0 the event {T, > s+t} is
equivalent to the event {X(u) =iforO<u<s+

t}.




Exponential holding time in states
of CTMC

 Therefore,
P(T.>s+t|T,>s)
=P(X(u)=iforO<u<s+t|X(u)=iforO<u<s)
=P(X(u)=ifors<u<s+t|X(u)=iforO<u<s)
=P(X(u) =ifors<u<s+t|X(s)=i)
= P(X(u) =ifor0<u<t|X(0)=i)
= P(T. > t),



Exponential holding time in states
of CTMC

* where
- the second equality follows from the simple fact
that P(A N B|A) = P(B|A), where we let A = {X(u) =
iforO<u<s}tand B={X(u)=ifors<u<s+t}].
- the third equality follows from the Markov
property.
- the fourth equality follows from time
homogeneity.
Therefore, the distribution of T, has the
memoryless property, which implies that it is
exponential.



Chapman-Kolmogorov equations

 Lemma 1. (Chapman-Kolmogorov equations) For
alls>0and t>0,P; (s +t) =X P, (s)P,(t)

* Orin matrix notation P(s + t) = P(s)P(t)
* Proof

* We can compute P, (s + t) by considering all
possible places the chain could be at time s.

* We then condition and and uncondition, invoking
the Markov property to simplify the conditioning;
l.e.,

P;i(s + 1) = P(X(s + t) = j|X(0) = i)



Chapman-Kolmogorov equations

* Proof (cntd.)
=2k P(X(s +t) = ,X(s) = k[ X(0) = i)

2.k P(X(s) = k| X(0) = i)P(X(s + t) = j| X(s) = k,X(0) = i)
(conditioning on X(s)=k)
= Xk P(X(s) = k[ X(0) = i)P(X(s + t) = j| X(s) = k)
(Markov property) (uncondition)
=Dk P. ((s)P;(t) (stationary transition probabilities)



Describing a CTMC

* ACTMC is well specified if we specify:
* (1) its initial probability distribution —
p(X(0) = i) for all states |

* (2) its transition probabilities - P, ;(t) for all
states i and j and positive times t.

 Thus we use these two elements to compute
the distribution of X(t) for each t,

P(X(t) =]) =2; P(X(0) = )Py ;(t)



Describing a CTMC

* Since the CTMC must be at any time in one of
the N states, the analogous of DTMC is, for
any state s

?’=1 Pi,j(t)=1



constructing a CTMC model- four
approaches(models)

for all four models:

the initial distribution are required and thus
we focus on specifying the model beyond the
initial distribution.

The four models are equivalent: you can get to
each from any of the others.

Even though these four approaches are
redundant, they are useful because they
together give a different more comprehensive
view of a CTMC.




constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

* For the DTMC with transition matrix P (looking at the
transition epochs of the CTMC thus p,=0), the transition
probabilities of the embedded chain

p,r'__.,i — _;ljrl_lln]t.{}s-rf LAL — } :f_f A i . }{f = j'}.

i %7 cf Plmin(Xy,..., X,;) = X;} = —}‘— when X; ~ Exp(A;)
; =N n

0 i=7



constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

* Markov process, transition rates q;; equilibrium

probabilities 7. o .
R
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* Embedded Markov chain, transition probabilities p;;
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constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

* For this DTMC the steady state probability

vector is 1, the unique probability vector
satisfying the equation

n=mP (1)

* |nstead of having each transition take unit
time, now we assume that the time required
to make a transition from state i has an
exponential distribution with rate g, and thus

mean 1/q, independent of the history before
reaching state i.



constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

* Relating the steady-state (stationary) probability vector
1t of the CTMC to steady state probability vector of
DTMC

ﬁj _ _(m/a) (2)
Zk (nk/qk)
* |ndeed, this first modelling approach corresponds to

treating the CTMC as a special case of a semi-Markov
process (SMP)

* We assume that there are no one-step transitions from

any state to itself in the DTMC ( no self-loop); i.e., we
assume that P;; = O for all i (we look at the chain at
transitions)

* this assumption is not critical,( see the third modelling)




constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

Markov processes have no self-loops and their state
transitions are characterized by a generator matrix, which
is analogous to a probability transition matrix. The
classification of states have analogous statements for
Markov processes where the probability transition matrix
is replaced by a generator matrix.

The generator matrix of a Markov process, denoted by Q,
has entries that are the rates at which the process jumps
from state to state. These entries are defined by

P[X(t+1)=j|X(®)=I]

qij = ll_f}g - L#j (3



constructing a CTMC (model 1 : DTMC with
Exponential Transition Times)

(We assume that the Markov process is time
homogeneous and thus that (3’) is independent of

t.)

The total rate out of state i is denoted by g;and
equals

qi = i qij (&)

The ho(ding time of state i is exponentially
distributed with rate q.

By definition, we set the diagonal entries of Q equal
to minus the total rate,

qii = —q; (5)

This implies that the row sums of matrix Q equal 0.



constructing a CTMC (model 1 : DTMC with

Exponential Transition Times)

* stationary probabilities in terms of the generat?r matrix.

Using the results of EMC in SMP (i.e. 7T, = , | E

ZJES nej E[Sj ]
S, ) and multiplying (2) by g; and summing yi%]lds [and using
(5') qi; = —q;and it; = Zjil ;Pji = Zj-‘/—'l i'q; =L slide 12]

Yi2oma;/a) Yjxi(ma;/a)+maq,/a,

Z(?O_ ﬁ'ql —
J On jT[j Y (1;/)) 2k (m;/a;)
=0 [nel (8.65)]
Zk (7T/ )

. Rewrltlng in matrix form, shows that the stationary
probabilities of a Markov process satisfy

mmQ =0,
with the additional normalization requirement that
|l =



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

 We look at the chain at any time ( so we need to
define zero-time transition probabilities, P;;(0) = 1
since there is no instant jump from a state)

* let P(0) =1, where | is the identity matrix; i.e., we
set P,;(0) = 1 for alliand we set P, ,(0) =0
whenever i # j.

P(R)—I_ .

* We defineQ=lim, — Ilmhd/op(h)_P(O)

h

= P'(0+) (it is rate)
See Ross prob. Models 9t ed. ch 6 page 378



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Thus the transition rate from state i to state j be
defined in terms of the derivatives:

_ P;j(h)—P;;j(0) _, _dPyj(t)
Q lth =P i,j(0+)_ dt ‘ t=0+ (3)
o (h)-
. P;ji(h)—P;;(0 P;i(h 1 dP;(t
=|jm 2t Pa0) P (04)= LD

hlo h R
* in most treatments of CTMC's instead of above, it
is common to assume that

P.i(h)=Qh+o(h)ash | 0ifj=i (4) and
P.i(h)-1=Qh+o(h)ash 0, (5)



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* For finite state space, (for infinite state spaces
under extra regularity conditions ),we have

* Qii=— 2 j#:i Qij(t) (6)
since P, ;(t) sumoverjto 1
] =1 ](t) =1so P; L(t) +Z] 1,j#i ',j(t)=1
11w P j0)=1- Py (1)
Dividing by t and let t->0 we obtain (6)
And let
—Q;i=q, (7) foralli,



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

 Same as DTMC model that is specified via a
transition probability matrix P, we can specify a
CTMC model via the transition-rate matrix Q.

* |n specifying the transition-rate matrix Q, it
suffices to specify the off-diagonal elements

Q, ; for i+ j, because the diagonal elements Q;; are
always defined by (6).

* The off-diagonal elements are always
nonnegative, whereas the diagonal elements are
always negative.

e Each row sum of Qis zero.



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* |n fact, this approach to CTMC modelling is
perhaps best related to modelling with
ordinary differential equations,

 We may use Chapman-Kolmogorov equations
to find the transition probabilities P; (t) from
the transition rates Q;; = P'; ,(0+)

* To do this we use the two systems of ordinary
differential equations (ODE’s) generated by
the transition rates namely, Kolmogorov
forward and backward ODE’s (defined next).



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

Theorem 1. (Kolmogorov forward and backward
ODE’s) The transition probabilities satisfy both the
Kolmogorov forward differential equations

Pi(s + t)=) P.«(s)Qy(t) foralli,j (9)
in matrix notation is the matrix ODE
P'(t) = P(t)Q (10)

and the Kolmogorov backward differential
equations

Piils +1)=X1 Q (1P (t) foralli,j (11)
in matrix notation is the matrix ODE
P(t)=QP(t) (12)



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Proof: We apply the Chapman-Kolmogorov
equations to write

P(t+ h) =P(t)P(h),
and then do an asymptotic analysisas h {, O.

 We subtract P(t) from both sides and divide by

h, to get

P(t+h)—P(t) P(h) —1
h = PO —

where | is the identity matrix




constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Recalling that | =P(0), we can let h {, O to get
the desired result (10).

* To get the backward equation (12), we start
with

P(t + h) = P(h + t)=P(h)P(t)

and reason in the sameway =



constructing a CTMC (model 2 : Transition Rates
and ODE’s)M/M/1 Queue

* Example (Transient Probabilities for the M/M/1
Queue)

* Note that given that the initial state at time 0 was
state |,

* Writing the forward equation for the MIMI1
gueue yields

dP. ,(t
(;'l(')( )= HP/,1(t) - APi,o(t);

dP, (t
d’é( ), P, a(t) + AP, (1) - (A + )P, (¢).




constructing a CTMC (model 2 : Transition Rates
and ODE’s) M/M/1 Queue

 Example (Cntd.) The solution to these equations for
this case is then given by

[p(i—i)/Z []. ) (at) + pU~ —1)/2 Ij Liy (at)
—p —(A+ p) ; —
Pl ==L (1= ) S jrina P K21 (at)

* wherep = %and a=2 u./p and

(x)k+2m
* 1) = T 2 k> —1

k+m)!m!
is the series expansion for the modified Bessel function of
the first kind.




constructing a CTMC (model 2 : Transition Rates
and ODE’s) M/M/1 Queue

 Example (Cntd.) It is difficult to have any intuition regarding the
solution except for its limiting, and thus stationary, values.

* (no need for normalization eq. since initial condition P(0) =(0,...0,
1,0,,...) being in state i at t=0 (p,(0)=1) is an extra equation)

* Inthe third term (i.e. coefficient (1 — p)p’/) we see factors
corresponding to the stationary distribution.

* it must be 11m P = (1 — p)p’ independent of i.

e The solutlon of tran5|ent probabilities suggests that :
° limt_)ooe '()\+ﬂ)p(j_i)/2 I] ~ l(at) =0
° limt_)ooe '()\"',U)p(j_j_])/z I] Ly l(at) =0

* limee M AY i p T P (at) = 1

29



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

e Equations (10 &12) are matrix ODE’s in t that can
be similarly solved as the scalar ODE f’(t)=gf(t)
and have matrix exponential solution.

 (P(0) =1, the initial condition plays no role) In
particular, as a consequence of Theorem 1, and If
all entries of Q are bounded,(Q is said to be
uniform: the name comes from uniformization of
CTMC in model 4) we have the following
corollary.

* Q;;=00 means instantaneous jump from state /

upon entering this state



constructing a CTMC (model 2 : Transition Rates
and ODE’s)

 Theorem 2. (matrix exponential
representation) The transition function can be
expressed as a matrix-exponential function of
the rate matrix Q, i.e.,

P(t) = e¥=y % LL (13)

n!
This matrix exponential is the unique solution to
the two ODE’s with initial condition P(0) = I.




constructing a CTMC (model 2 : Transition Rates
and ODE’s)

* Proof: If we verify or assume that we can
interchange summation and differentiation in
(13), we can check that the displayed matrix
exponential satisfies the two ODE’s

, ntn d Qntn

P (t)- Zn 0—=2n=0

n! dt n!

00 nQ e 1_QZOO Qntn Qth -

= n=0 n! n! -




Summary of some Models of Markov Processes

Type of Process Self-Loops Holding Time
Semi-Markov Processes No Arbitrary
Model 1 Yes Hi=1
Markov chains
Model 2 No Geometric, E [H;] = (1 — p; ;)"
Continuous time No Exponential, F [H;] = ¢
Markov processes | Uniformized-Model 1 Yes H; =1
Uniformized—Model 2 No Geometric, E [H;] = Gmax/¢i

33
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